

Kevin Wheeler P.E.

Using RiverWare to Support the Ongoing Bi-National Discussions for Management of the Colorado River



Russ Callejo



# **Purpose of Discussions**

- Joint Cooperative Measures for Colorado River Management
- Mutual Benefits for United States and Mexico





# Background

1944 Treaty

Watfr

ONSULTING

- Allotment of Water to Mexico
- Minute 317 June 2010
  - Conceptual Framework for U.S. Mexico
     Discussions on Colorado River Cooperative Actions
- Minute 318 December 2010





# Background

- 2007 Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lakes Powell and Mead
  - Proactive System Management
  - Reductions of Water Allocation for Lower Basin States
  - "Shortage" Volumes Based on Lake Mead Elevations
  - Only Pertains to Unites States





#### Hydrology Sub-Workgroup

- United States and Mexico Participants
- Explore Alternatives
  - Mexico Shortage Triggers
  - Mexico Surplus Triggers

#### **Alternative Trigger Mechanisms**

- 1. Reservoir Storage Triggers
- 2. Climate-Based Triggers
- 3. Combination Storage/Climate Triggers
- 4. Unique Index Value
  - Colorado River Index (CRI)



Key Assumptions

- 1906-2008 Historical Hydrology
- Fixed Surplus and Shortage Values
- 2012-2026 Time Horizon



# APPROACH

- Colorado River Simulation System (CRSS)
- Multiple Runs using Index Sequential Method
- Rule-Based Policy Modifications
  - Reductions of Mexico Demands During Shortage
  - Increases of Mexico Demands During Surplus
- Data Objects
  - Control Panel
  - Internal RiverWare Analyses
- External GPAT Analysis

### **Scenarios Studied**

- 100+ Exploratory Scenario Runs
- 38 Unique Scenarios Reported
  - 18 Storage Triggered Scenario
  - 5 Climate Triggered Scenarios
  - 10 Storage/Climate Combination Triggered
     Scenarios
  - 5 Index Triggered Scenarios

#### **12 Lake Mead Trigger Scenarios**



6 Combined Storage Trigger Scenarios



| Shortage<br>Threshold | Surplus<br>Threshold |
|-----------------------|----------------------|
| < 10%                 | > 90%                |
| < 20%                 | > 80%                |
| < 30%                 | > 70%                |
| < 40%                 | > 60%                |
| < 50%                 | > 50%                |
| < 43%                 | > 64.5%              |

# **Climate Indicator Trigger**

• Standardized Precipitation Index (SPI)

- Fits a Precipitation Data to a Gamma Distribution

– 7-Year SPI<sub>7</sub> Best Correlated with Reservoir Elevations



#### 5 Standardized Precipitation Index (SPI<sub>7</sub>) Scenarios

| Shortage<br>Threshold | Surplus<br>Threshold |
|-----------------------|----------------------|
| < 0                   | > 0                  |
| < -0.5                | > -0.5               |
| < -1.0                | > -1.0               |
| < -1.5                | > -1.5               |
| < -2.0                | > -2.0               |

| SPI Values      | Category       |
|-----------------|----------------|
| $\geq$ 2.00     | Extremely wet  |
| 1.50 to 1.99    | Very wet       |
| 1.00 to 1.49    | Moderately wet |
| -0.99 to 0.99   | Near normal    |
| -1.00 to -1.49  | Moderately dry |
| -1.50 to -1.99  | Severely dry   |
| ≤ <b>-</b> 2.00 | Extremely dry  |

#### 10 Combination Storage AND/OR Precipitation Scenarios

| Condition | Threshold                                 |  |  |  |  |
|-----------|-------------------------------------------|--|--|--|--|
| Surplus   | SPI <sub>7</sub> > 0 AND Mead > 1145'     |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < 0 AND Mead < 1075'     |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +0.5 AND Mead > 1145'  |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -0.5 AND Mead < 1075'  |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +1.0 AND Mead > 1145'  |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -1.0 AND Mead < 1075'  |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +1.5 AND Mead > 1145'  |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -1.5 AND Mead < 1075'  |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +2.0 AND Mead > 1145'  |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -2.0 AND Mead < 1075'  |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > 0.0 OR Combined > 70%  |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < 0.0 OR Combined < 30%  |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +0.5 OR Combined > 70% |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -0.5 OR Combined < 30% |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +1.0 OR Combined > 70% |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -1.0 OR Combined < 30% |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +1.5 OR Combined > 70% |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -1.5 OR Combined < 30% |  |  |  |  |
| Surplus   | SPI <sub>7</sub> > +2.0 OR Combined > 70% |  |  |  |  |
| Shortage  | SPI <sub>7</sub> < -2.0 OR Combined < 30% |  |  |  |  |

### **Colorado River Index**

- Developed through a Principal Component Analysis of:
  - SPI<sub>7</sub>
  - Lake Powell Storage
  - Lake Mead Storage
  - Combined Lake Powell and Lake Mead Storage
  - Lake Powell Water Year Release
  - Equalization Release from Lake Powell
  - Natural Flow at Lee's Ferry Gaging Site
  - Basin-wide Consumptive Use



#### **5 Colorado River Index Scenarios**

|              | SPI   | PowellStor | MeadStor | ComStor | LFNatFlow | PowellRel | Equalization | ConUse |
|--------------|-------|------------|----------|---------|-----------|-----------|--------------|--------|
| SPI          | 1.00  | 0.85       | 0.71     | 0.80    | 0.89      | 0.71      | 0.64         | -0.26  |
| PowellStor   | 0.85  | 1.00       | 0.88     | 0.97    | 0.68      | 0.62      | 0.65         | -0.29  |
| MeadStor     | 0.71  | 0.88       | 1.00     | 0.97    | 0.66      | 0.57      | 0.55         | -0.28  |
| ComStor      | 0.80  | 0.97       | 0.97     | 1.00    | 0.69      | 0.61      | 0.62         | -0.30  |
| LFNatFlow    | 0.89  | 0.68       | 0.66     | 0.69    | 1.00      | 0.58      | 0.44         | -0.19  |
| PowellRel    | 0.71  | 0.62       | 0.57     | 0.61    | 0.58      | 1.00      | 0.75         | -0.50  |
| Equalization | 0.64  | 0.65       | 0.55     | 0.62    | 0.44      | 0.75      | 1.00         | -0.13  |
| ConUse       | -0.26 | -0.29      | -0.28    | -0.30   | -0.19     | -0.50     | -0.13        | 1.00   |



$$CRI = (0.48) * A + (0.43) * B + (0.48) * C + (0.47) * D + (-0.36) * E$$

$$A = \frac{SPI_7 - 0.15}{0.46}$$

$$B = \frac{CS \text{ in } MAF - 37.38 \text{ MAF}}{8.59 \text{ MAF}}$$

$$C = \frac{LF \text{ in } MAF - 14.85 \text{ MAF}}{2.70 \text{ MAF}}$$

$$D = \frac{PR \text{ in } MAF - 10.49 \text{ MAF}}{2.22 \text{ MAF}}$$

$$E = \frac{CU \text{ in } MAF - 12.34 \text{ MAF}}{1.01 \text{ MAF}}$$

1.01 MAF

# **Evaluation of Scenarios**

- Determine Probability of Shortages and Surplus to Mexico for 2012-2026
- Compare with Projections for the United States
- Determine Frequency of Alignment of Shortage and Surplus Conditions





#### Probability of Surplus vs. Probability of Shortage 2012-2026



#### Probability of Alignment or Shortage or Surplus



# Probability of Surplus vs. Probability of Shortage 2012-2026



#### Primary Task of the Hydrology Workgroup is Completed

- ✓ Decision Makers Have a Full Suite of Options
- ✓ Stay Tuned for the Results...

# Questions?



